ENVIRONMENTAL CHEMISTS

Date of Report: 11/03/05 Date Received: 10/27/05

Project: Metro Self Monitor, PO# M107176, F&BI 510278

Date Extracted: 10/31/05 Date Analyzed: 10/31/05

RESULTS FROM THE ANALYSIS OF WATER SAMPLE FOR TOTAL METALS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROSCOPY (ICP-MS)

(METHOD 200.8)

Results Reported as µg/L (ppb)

					The State of the S		
Sample ID		$\underline{\mathbf{c}}$	${f r}$	Cu		Ni	<u>Zn</u>
Laboratory ID							
M107176		71	0	720		760	< 50
510278-01	Halling V	haddwad					
Mir Mira sir							
Method Blan	k	<2	5	< 50		<50	< 50

Cr Chromium Cu Copper Ni Nickel

Zn Zinc

ENVIRONMENTAL CHEMISTS

Date of Report: 11/03/05 Date Received: 10/27/05

Project: Metro Self Monitor, PO# M107176, F&BI 510278

QUALITY ASSURANCE RESULTS FOR TOTAL METALS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROSCOPY (METHOD 200.8)

Laboratory Code: 510189-01 (Duplicate)

Maria de la compansión de				Relative	
	Reporting	Sample	e Duplicate	e Percent	Acceptance
Analyte	Units	Result	Result	Difference	Criteria
Chromium	μg/L (ppb)	380	380	0	0-20
Copper	μg/L (ppb)	350	360	3	0-20
Nickel	μg/L (ppb)	470	470	0	0-20
Zinc	μg/L (ppb)	270	270	0	0-20

Laboratory Code: 510189-01 (Matrix Spike)

			Percent		
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Chromium	μg/L (ppb)	20	380	b	50-150
Copper	μg/L (ppb)	20	360	b	50-150
Lead	μg/L (ppb)	10	190	b	50-150
Zinc	μg/L (ppb)	50	270	b	50-150

Laboratory Code: Laboratory Control Sample

			Percent	ir Made Traditi
A Pharaitha	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Chromium	μg/L (ppb)	20	101	70-130
Copper	μg/L (ppb)	20	104	70-130
Lead	μg/L (ppb)	10	. 96	70-130
Zinc	μg/L (ppb)	50	99	70-130

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

November 3, 2005

DUPLICATE COPY

INVOICE # 05ACU1103-1

Accounts Payable Alaskan Copper Works 628 South Hanford Seattle, WA 98134

RE: Project Metro Self Monitor, PO# M107176, F&BI 510278 - Results of testing requested by Gerry Thompson for material submitted on October 27, 2005.

FEDERAL TAX ID # (b) (6)

510278		и ж Э в	SAM	PLE (CHAI	N OF CU	JST	OI	Υ	۲	. M	10	o/a=	Ha	5					AI4
	1/2	06 J	_	SAMPL	ERS	ignature)				_				T		Pa	ige#_	ADOU	of	IMP
Send Report To FOREM Company Alaskan Address 628 5. A) Dogga	your s		PROJECT NAME/NO.							PC		TURNAROUND TIME Standard (2 Weeks) RUSH							
Company 178	II for 1	577	 /	nesna	s Sel	I mon	iga	n			n	10	7/7	6				s auth	orize	d by:
Address GCO O. /	JANOW.		7	REMAI	RKS									\dashv	=	S	AME	LE D	ISPOS	SAL
City, State, ZIP_Sester Phone #296-387-837-8	e hos	- 7810			9		8											fter 30 mples		
Phone #206-382-8379	Fax #_ <i></i>	6-582-4	308															vith in		tions
										-		_	-	EQU	EST.	ED		1		
g . 1 TD	1.170	Dete	m:	S1	- m	# of	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260	by 8270	S	A 22						No	:
Sample ID	Lab ID	Date	Time	Sampl	e type	containers	TPH-1	TPH-G	BTEX b	VOCs b	SVOCs by 8270	E	CACLINE			3			140	tes
m107176	01	10/27/05	12:30	Ho	20	/							Ž							
			-																	
		1															T			a
				1												Ė	\dagger	†		
						 	T	T	-			.,2					\dagger	1		
							I				-			\vdash		+	+	+	•	
Friedman & Bruya, Inc. 3012 16th Avenue West	Relinguished	SIGNATU	IRE		G)	PRINT			<u> </u> 260^	1	<u> </u>	L	7	OMP Cl			+	DAT		AZZZ
Seattle, WA 98119-2029	Received by	1	w							-	\dashv			R.				1/27 L	701)
Ph. (206) 285-8282	Relinquished by:				Michael Erach L F1										\top	,				
Fax (206) 283-5044	Received by:				· ·															

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

November 3, 2005

Gerry Thompson, Project Manager Alaskan Copper Works 628 South Hanford Seattle, WA 98134

Dear Mr. Thompson:

Included are the results from the testing of material submitted on October 27, 2005 from the Metro Self Monitor, PO# M107176, F&BI 510278 project. There are 2 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Charlena Morron

Charlene Morrow

Chemist

Enclosures ACU1103R.DOC